The Newton 7.0 is an innovative optical bioluminescence, fluorescence, and 3D tomographic imaging system designed with the user in mind. It is ideal for in vivo, ex vivo and in vitro imaging applications, allowing for simultaneous imaging of multiple animals or samples at a time. It’s advanced features and software are easy to navigate and optimized for a multi-user interface. Furthermore, the intuitive workflow and advanced system sensitivity facilitates time-saving signal acquisition for longitudinal studies.

VILBER is a leading life science company developing and manufacturing fluorescence, chemiluminescence and bioluminescence imaging systems for applications ranging from small animal to cell biology research. Founded in 1954, Vilber is a leader in the molecular imaging sector, equipping more than 20,000 laboratories worldwide. An estimated 60,000 people use their products every day in over 100 countries.

The Newton 7.0 is a highly sensitive optical imaging system dedicated to pre-clinical imaging of small animals in vivo, and may also be used on a variety of in vitro and ex vivo samples. It combines the best optics and animal handling features for optimum scientific images and results. The Newton 7.0 systems are capable of bioluminescence, fluorescence as well as 3D tomographic imaging. The system is:

  • User-friendly
  • Does not require any radiation to acquire images
  • Is non-invasive, allowing for longitudinal studies
  • Allows for up to 5 mice or 3 rats to be imaged simultaneously
FeatureBenefit
Powerful Fluorescence ExcitationThe Newton 7.0 offers 8 excitation channels in the visible RGB and near infrared spectrums. The very tight LED spectrum is additionally constrained with a very narrow excitation filter; these excitation sources are categorized as a Laser Class II due to their intense power. Movement of the excitation source over the entire FOV ensures consistent and reproducible results over the course of a longitudinal study
Full Spectrum Tunability8 excitation channels and 8 emission filters are available to cover the complete spectrum from Blue to infra-red.

Narrow bandpass filters are used for both excitation and emission to reduce cross talk between dies, allowing for up to 3 dyes to be imaged simultaneously

Macro-imaging to large throughput studiesVilber’s intelligent darkroom architecture allows for fully automated movement of the camera (Z-axis) and animal pad (X/Y axis) to move through both the macro imaging FOV (6x6cm) to the full FOV (20x20cm) for imaging up to 5 mice
Spectral UnmixingSpectral unmixing is possible for both bioluminescence and fluorescence imaging when different luciferase enzymes or fluorescent dies are used.

The includes algorithms to remove crosstalk between the different signals, allowing for each channel to contain signal from only one reporter

3D Optical TomographyAn integrated 3D tomography module allows both bioluminescence and fluorescence signals to be reconstructed in 3D and overlaid within a topographical model of the imaging subject.

For better understanding of anatomical and deeper tissue structures, the digital organ library allows for superimposition of the mouse organs and bones onto the topographical model

State-or-the-art camera technology:

  • Scientific grade 16-bit CCD
  • -90oC delta cooling
  • f/0.7 aperture
  • 10 megapixel image resolution
  • 4.8 Optical Density
The advanced camera and optics provide increased sensitivity to either bioluminescence or fluorescence signals, with a very low signal to noise ratio. The high optical density allows for samples with both very low and high signals to be imaged without saturation, allowing for quantifiable results

Fluorescence imaging can be used to detect fluorescent reporter genes or dyes in vivo using Vilber’s dynamic range of excitation filters.

Subcutaneous tumor expressing mCherry

The below dyes can be used with the Newton 7.0 systems:

Bioluminescence imaging can be used to detect luciferase expressing or secreting molecules in the tissue of interest

Subcutaneous tumor expressing firefly luciferase

Multispectral in vivo imaging is possible by using different luciferase enzyme/substrate pairs or by using different fluorescent dyes.

Signals can be overlaid within the same image, up to 3 reporters can be imaged simultaneously.

Images acquired at different time points can be arranged to form a longitudinal image sequence. For example, a time series could be constructed from images acquired on different days following an experimental treatment.

The software then compares the image data throughout the experimental treatment.

 
           Day 1                               Day 5                             Day 10                              Day 15                           Day 20                          Day 25                             Day 30                            Day 35

Oncology

“Optical imaging can be used to noninvasively monitor the progression and spread of cancer throughout the body in preclinical animal models”

Immunology

“Monitoring various populations of immune cells can contribute significantly to the understanding of their physiology and the development of new therapeutic strategies’

Infectious disease

”Optical imaging can be used to noninvasively visualize a site of infection as well as the efficacy of a treatment in the context of living subjects”

Neurology

”Optical imaging can be used to monitor the progression of various neurodegenerative diseases as well as to test novel targeted therapeutics within the brain and spinal cord”

Biodistribution studies

”The ability to image the whole subject, gives optical imaging a unique advantage in preclinical biodistribution studies, such that one image can provide measurements for multiple organs throughout the body”

F E A T U R E SNEWTON 7.0 BT100NEWTON 7.0 BT500NEWTON 7.0 FT100NEWTON 7.0 FT500
M O D A L I T YIn vivo / in vitro Optical imaging platform

Bioluminescence detection

3D Optical Tomography

_

In vivo / in vitro Optical imaging platform

Bioluminescence detection

Fluorescence detection

D Optical Tomography

O P T I C S 

C a m e r a

16-bit Scientific Grade CCD Camera

Grade 0 / 400-900nm / 4.8 OD

Cooling: -90°C Delta

 

16-bit Scientific Grade CCD Camera

Grade 0 / 400-900nm / 4.8 OD

Cooling: -90°C Delta

 

16-bit Scientific Grade CCD Camera

Grade 0 / 400-900nm / 4.8 OD

Cooling: -90°C Delta

 

16-bit Scientific Grade CCD Camera

Grade 0 / 400-900nm / 4.8 OD

Cooling: -90°C Delta

 

L e n s

Proprietary V.070 – Fixed Focal Length Motorized lens

Aperture: f/0.7

Proprietary V.070 – Fixed Focal Length Motorized lens

Aperture: f/0.7

Proprietary V.070 – Fixed Focal Length Motorized lens

Aperture: f/0.7

Proprietary V.070 – Fixed Focal Length Motorized lens

Aperture: f/0.74

R e s o l u t i o n

Resolution: 2160×2160

Monochrome & Color imaging

Resolution: 2160×2160

Monochrome & Color imaging

Resolution: 2160×2160

Monochrome & Color imaging

Resolution: 2160×2160

Monochrome & Color imaging

F i e l d  o f  V i e w

a

1 animal capacity

FOV Min: 12x12cm

FOV Max: 12x12cm

3D imaging mode via 3D-IR cameras

5 animals capacity

FOV Min: 6x6cm

FOV Max: 20x20cm

Macro imaging mode

3D imaging mode via 3D-IR cameras

1 animal capacity

FOV Min: 6x6cm

FOV Max: 20x20cm

Macro imaging mode

3D imaging mode via 3D-IR cameras

5 animals capacity

FOV Min: 6x6cm

FOV Max: 20x20cm

Macro imaging mode

3D imaging mode via 3D-IR cameras

E X C I T A T I O N

W h i t e – L i g h t

Dual EPI-White light LED panelsDual EPI-White light LED panels

F l u o r e s c e n c e

Upgradeable to Fluorescence8 Fluorescent channels included 420 / 480 / 520 / 580 / 640 / 680 / 740 / 780nm

 E M I S S I O N

F i l t e r  W h e e l

10-position Motorized filter wheel10-position Motorized filter wheel

E m m i s s i o n
F i l t e r s

4 Narrow Band-pass filters included for the BLI Tomography 500 / 550 / 600 / 650nm8 Narrow Band-pass filters included for the BLI Tomography 500 / 550 / 600 / 650nm

  D A R K R O O M

  M o t o r i z a t i o n
Fixed Camera

Fixed Animal Stage

Z-Axis motorized camera

X/Y-Axis motorized Animal Stage

Fixed Camera

Fixed Animal Stage

Z-Axis motorized camera

X/Y-Axis motorized Animal Stage

A N I M A L   
H A N D L I N G
Heated Mouse Bed (+37°C) included

Animal breathers included